

Guess Paper – 2014 Class – XI Subject –Chemistry

S.No				Ехро	ected Answe	r		Marks	Total Marks
1.	(i) M.F. = ((E.F.) _n						1/2	1
	(ii) Molecu	ular wt. =	= 2 × va	pour de	ensity.			1/2	1
3.	(i), for <i>l</i> =	1, m canı	not be ·	-2.				1/2 + 1/2	1
4.	'b' determ molecules		ume oc	cupied	by gas molec	ules and hen	ce size of the	1	1
6.					anges take p ed the ionic p		ant pressure.	1	1
7.	Solution :	To calcula	te the e	mpirica	formula			1	1
9.	Element	Symbol	%age	At.wt.	no.of moles	Simplest molar ratio	simplest whole no. ratio	2	2
								No step marking	
	Carbon	с	24.27	12	24.27/12 =	2.02/2.02 = 1	1	Indiking	
					2.02	0.94875/ 4.07/2.02 = 2			
	Hydrogen	н	4.07	1	4.07/1= 4.07	2.02/2.02 = 1	2		
	Chlorine	Cl	71.65	35.5	71.65/35.5 = 2.02	2.02/2.02 = 1	1		
	Hence the	empiric	l al form	ula is C	l H₂Cl	I			
	Empirical	formula	wt. = 12	2 + 2 + 3	35.5 = 49.5				
	Molecular	wt. = 98	.96						

www.cbseguess.com

Other Educational Portals

www.icseguess.com | www.aipmtguess.com | www.aieeeguess.com | www.aieeeg

	⇒ n = 98.96/49.5 = 2		
	\Rightarrow Molecular formula = (CH ₂ Cl) ₂		
	\Rightarrow Molecular formula = C ₂ H ₄ Cl ₂		
11.	'Isolated gaseous atom' means that the atom of the element has been separated from the lattice in solid state and is experiencing minimum forces of attraction from other atoms. 'ground state' means the stable state of the atom when all the electrons are in the minimum energy state.	2	2
	(a) Due to large size, minimum nuclear charge and single valence		
	electron.		
	(b) Covalent radius is one half of the inter nuclear distance in bonded		
12.	state whereas van der Waals' radius is one half of the inter	1	2
	nuclear distance in isolated state.		
	(a) Angular momentum = $\sqrt{I(I+1)} h/2\pi$	1	
	(b) It signifies that energy of an electron increases with increasing		
	distance from the nucleus and vice-versa.		
13.	OR	1	2
	(a) Spin quantum number	1	
	(b) It cannot be present in any orbital other than that of p-subshell.		
	Because m = -1, also of p-sub shell it cannot be in pz as for pz		
	orbital m = 0.	1	
		1	2
	Temperature of the system will increase because on adding Cl ₂ , the equilibrium will shift in the backward direction producing more heat.		

www.cbseguess.com

		1	
	(a) Due to very low ionization enthalpies their electrons can be easily		
15.	excited.	2	2
	(b) After losing ns ¹ electron the mono valent ions gain noble gas		
17.	configuration.	1	2
	(i) Due to back donation of electrons by X(halogen) atom.		
	(ii) Down the group, stability of +1 oxidation state increases and that	1	
	of +3 oxidation state decreases due to inert pair effect.		
18.	(a) Number of waves present in the unit length of the medium.	1	2
	(b) Solution : given mass m = 3000 Kg	1	
	$\Delta x = 10 \text{ pm} = 10 \times 10^{-12} \text{ m} = 10^{-11} \text{ m}$		
22.	by uncertainty principle,	1	3
	$\Delta v = h / (4\pi \times m \times \Delta x)$	2	
	= $(6.63 \times 10^{-34} \text{ Kg m}^2 \text{ s}^{-1}) / (4 \times 22/7 \times 3000 \text{ Kg} \times 10^{-11} \text{ m})$	No step	
	$= 1.76 \times 10^{-27} \text{ ms}^{-1}$	marking	
	(i) In calculating the partial pressure of dry gas when collected over		
	water.		
	(ii) Solution : $56 \text{ g N}_2 = 56/28 = 2 \text{ mole}$		
23.	44 g CO ₂ = 44/44 = 1 mole	1	3
	16 g CH ₄ = 16/16 1 mole		
	therefore partial pressure of CH ₄	2	
	$= nCH_4 / (nN_2 + nCO_2 + nCH_4) \times P$	No step marking	
	= 1 / (2 +1+1) × 720 = 180 mm Hg		

www.cbseguess.com

	(i) Derivation : For a general reaction,		
	X		
		2	
	$aA + bB = \frac{cC +}{cC +} dD$,		
24.		No step marking	3
	$Kc = [C]^{c} [D]^{d} / [A]^{a} [B]^{b}$	marking	
	or, $Kc = C_{C}^{c} \cdot C_{D}^{d} / C_{A}^{a} \cdot C_{B}^{b}$		
	where C_A, C_B, C_C and C_D are the molar concentrations of A,B,C and D respectively. Also for gaseous phase ,		
	$Kp = P_{C}^{c} \cdot P_{D}^{d} / P_{A}^{a} \cdot P_{B}^{b}$		
	where P_A, P_B, P_C and P_D are partial pressures of A,B,C and D respectively. Now, for ideal gas, PV = nRT or, P = n/VRT, where n/V = C, i.e., molar concentration. For A,B,C and D therefore, we may write, $P_A = C_ART$, $P_B = C_BRT$, $P_C = C_CRT$ and $P_D = C_DRT$. Therefore we have,		
	$Kp = C_C RT^c \cdot C_D RT^d / C_A RT^a \cdot C_B RT^b$		
	$= C_{C}^{c} . C_{D}^{d} / C_{A}^{a} . C_{B}^{b} (RT)^{\{(c+d) - (a+b)\}}$		
	= Kc (RT) ^{Δn} where $\Delta n = \{(c+d) - (a+b)\}$		
	(ii) (a) HCO_3^- (b) H_2O		
		1/2 + 1/2	
	(a) Which undergoes a decrease in oxidation number.	/2 /2	
	(b) Solution :		
	Indicating oxidation number of different species, www.cbsequess.com		

www.cbseguess.com Other Educational Portals

	(0) (+5) (+2) (-3)		
	$Sn(s) + NO_{3}(aq) + H^{+}(aq) \rightarrow Sn^{2+}(aq) + NH_{4}(aq) +$		
	H ₂ O(I)	1/2	
25.	gives,	2½	3
	$Sn(s) \rightarrow Sn^{2+}(aq)$ (i) as oxidation half	No step	
	Balancing oxidation half, we get	marking	
	$Sn(s) \rightarrow Sn^{2+}(aq) + 2e^{-}$ (ii)		
	Again, reduction half is,		
	$NO_3(aq) \rightarrow NH_4(aq)$ (iii). As oxidation no. of N decreases from +5 to -3, each N atom gains 8 electrons.		
	Therefore we get,		
	$NO_3^-(aq) + 8e^- \rightarrow NH_4^+(aq)(iv)$		
	Balancing for O atoms we get,		
	$NO_3^{-}(aq) + 8e^{-} \rightarrow NH_4^{+}(aq) + 3H_2O(I)(v)$		
	Balancing for H atoms gives,		
	$10H^{+} + NO_{3}^{-}(aq) + 8e^{-} \rightarrow NH_{4}^{+}(aq) + 3H_{2}O(I)(vi)$		
	Now, multiplying (ii) by 4 gives,		
	$4Sn(s) \rightarrow 4Sn^{2+}(aq) + 8e^{-}$ (vii). Adding (vi) & (vii) we get,		
	$4Sn(s) + NO_{3}(aq) + 10H^{+}(aq) \rightarrow 4Sn(aq) + NH_{4}(aq) + 3H_{2}O(I)$		
	(a) The difference in the properties of isotopes of an element such as		
	rates of reaction, etc. due to difference in atomic masses is called		
	isotope effect.		

www.cbseguess.com

attached to basic groups such as OH with the general composition R—NH ₃ ⁺ OH. 1 26. (c) The region of the periodic table from group 7 to 9 which do not form hydrides is called hydride gap. 3 (a) The resemblance of elements 2nd period with diagonally situated 1 elements of neighbouring group and third period is called diagonal relationship. e.g. Li shows diagonal relationship to Mg. 1 (b) Being strongly electropositive, they themselves are strong reducing agents. 1 (c) 2CaSO ₄ . 2H ₂ O 393 K 2C p SO ₄ . ½ H ₂ O + 3H ₂ O 1 27. (gypsum) (P.O.P) 3 OR (a) Mg. Diagonal relationship. 1 (b) CaO + H ₂ O → Ca(OH) ₂ 1 1 (c) Due to anionic hydrolysis as it is a salt of strong base (NaOH) 1 1 and weak acid (H ₂ CO ₃). (a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases ½ + ½ (ii) Because lateral orbital overlap always follows axial overlap. 1 3 (b) MO confg. of 1 3		(b) Anion-exchange resins consists of giant hydrocarbon framework		
26.(c) The region of the periodic table from group 7 to 9 which do not form hydrides is called hydride gap.3(a) The resemblance of elements 2nd period with diagonally situated elements of neighbouring group and third period is called diagonal relationship. e.g. Li shows diagonal relationship to Mg.1(b) Being strongly electropositive, they themselves are strong reducing agents.1(c) 2CaSO4. 2H2O $\frac{393 K}{2Cp}SO4. ½ H2O + 3H2O$ 127.(gypsum)(P.O.P)3(a) Mg. Diagonal relationship.1(b) CaO + H2O \rightarrow Ca(OH)21(c) Due to anionic hydrolysis as it is a salt of strong base (NaOH) and weak acid (H2CO3).1(a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases and bond length decreases.½ + ½(ii) Because lateral orbital overlap always follows axial overlap.13		attached to basic groups such as OH ⁻ with the general		
form hydrides is called hydride gap.1(a) The resemblance of elements 2nd period with diagonally situated1elements of neighbouring group and third period is called1diagonal relationship. e.g. Li shows diagonal relationship to Mg.1(b) Being strongly electropositive, they themselves are strong1reducing agents.(c) $2CaSO_4$. $2H_2O$ $\frac{393 K}{2C_P}SO_4$. $\frac{1}{2}H_2O$ + $3H_2O$ 27.(gypsum)(P.O.P)3OR(a) Mg. Diagonal relationship.(b) CaO + $H_2O \rightarrow Ca(OH)_2$ 1(c) Due to anionic hydrolysis as it is a salt of strong base (NaOH)1and weak acid (H_2CO_3).1(a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases $\frac{1}{1}$ (ii) Because lateral orbital overlap always follows axial overlap.131		composition R—NH ₃ ⁺ OH ⁻ .	1	
(a) The resemblance of elements 2nd period with diagonally situated elements of neighbouring group and third period is called diagonal relationship. e.g. Li shows diagonal relationship to Mg.1(b) Being strongly electropositive, they themselves are strong reducing agents.1(c) 2CaSO ₄ . 2H ₂ O $\frac{393 K}{2Cp}SO_4$. ½ H ₂ O + 3H ₂ O127.(gypsum)(P.O.P)3OR1(a) Mg. Diagonal relationship.1(b) CaO + H ₂ O \rightarrow Ca(OH) ₂ 1(c) Due to anionic hydrolysis as it is a salt of strong base (NaOH)1and weak acid (H ₂ CO ₃).1(a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases and bond length decreases.½ + ½(ii) Because lateral orbital overlap always follows axial overlap.113	26.	(c) The region of the periodic table from group 7 to 9 which do not		3
elements of neighbouring group and third period is called diagonal relationship. e.g. Li shows diagonal relationship to Mg.1(b) Being strongly electropositive, they themselves are strong reducing agents.1(c) 2CaSO ₄ . 2H ₂ O $393 K$ 2CpSO ₄ . ½ H ₂ O + 3H ₂ O127.(gypsum)(P.O.P)3(a) Mg. Diagonal relationship.1(b) CaO + H ₂ O \rightarrow Ca(OH) ₂ 1(c) Due to anionic hydrolysis as it is a salt of strong base (NaOH)1and weak acid (H ₂ CO ₃).1(a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases and bond length decreases.½ + ½(ii) Because lateral orbital overlap always follows axial overlap.13		form hydrides is called hydride gap.		
diagonal relationship. e.g. Li shows diagonal relationship to Mg. (b) Being strongly electropositive, they themselves are strong reducing agents. (c) $2CaSO_4 \cdot 2H_2O$ $\xrightarrow{393.K}$ $2C_9SO_4 \cdot ½ H_2O + 3H_2O$ 1 27. (gypsum) (P.O.P) 3 OR (a) Mg. Diagonal relationship. (b) CaO + H_2O \rightarrow Ca(OH) ₂ (c) Due to anionic hydrolysis as it is a salt of strong base (NaOH) 1 and weak acid (H_2CO_3). (a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases and bond length decreases. $\% + \%$ (ii) Because lateral orbital overlap always follows axial overlap. 1 3 1		(a) The resemblance of elements 2nd period with diagonally situated	1	
(b) Being strongly electropositive, they themselves are strong1reducing agents.1(c) $2CaSO_4$. $2H_2O$ $393 \times 2C_{9}SO_4$. $1/2 H_2O + 3H_2O$ 127.(gypsum)(P.O.P)3OR(a) Mg. Diagonal relationship.(b) CaO + $H_2O \rightarrow Ca(OH)_2$ 1(c) Due to anionic hydrolysis as it is a salt of strong base (NaOH)1and weak acid (H_2CO_3).1(a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases $1/2 + \frac{1}{2}$ (ii) Because lateral orbital overlap always follows axial overlap.131		elements of neighbouring group and third period is called		
reducing agents.I(c) $2CaSO_4$. $2H_2O$ $393 \times 2C_PSO_4$. $\frac{1}{2}H_2O + 3H_2O$ 127.(gypsum)(P.O.P)3OR(a) Mg. Diagonal relationship.1(b) CaO + $H_2O \rightarrow Ca(OH)_2$ 1(c) Due to anionic hydrolysis as it is a salt of strong base (NaOH)1and weak acid (H_2CO_3).1(a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases $\frac{1}{2} + \frac{1}{2}$ (ii) Because lateral orbital overlap always follows axial overlap.131		diagonal relationship. e.g. Li shows diagonal relationship to Mg.		
(c) $2CaSO_4$. $2H_2O$ $393 K$ $2CpSO_4$. $\frac{1}{2}H_2O + 3H_2O$ 127.(gypsum)(P.O.P)3OR(a) Mg. Diagonal relationship.1(b) CaO + $H_2O \rightarrow Ca(OH)_2$ 1(c) Due to anionic hydrolysis as it is a salt of strong base (NaOH)1and weak acid (H_2CO_3).1(a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases $\frac{1}{2} + \frac{1}{2}$ (ii) Because lateral orbital overlap always follows axial overlap.131		(b) Being strongly electropositive, they themselves are strong	1	
27.(gypsum)(P.O.P)3OR1(a) Mg. Diagonal relationship.1(b) CaO + $H_2O \rightarrow Ca(OH)_2$ 1(c) Due to anionic hydrolysis as it is a salt of strong base (NaOH)1and weak acid (H_2CO_3).1(a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases $1/2 + \frac{1}{2}$ (ii) Because lateral orbital overlap always follows axial overlap.131		reducing agents.		
ORI(a) Mg. Diagonal relationship.1(b) $CaO + H_2O \rightarrow Ca(OH)_2$ 1(c) Due to anionic hydrolysis as it is a salt of strong base (NaOH)1and weak acid (H_2CO_3).1(a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases $1/2 + \frac{1}{2}$ (ii) Because lateral orbital overlap always follows axial overlap.13		(c) $2CaSO_4$. $2H_2O$ $\xrightarrow{393 \text{ K}}$ $2C_2SO_4$. $\frac{1}{2}H_2O + 3H_2O$	1	
(a) Mg. Diagonal relationship.1(b) CaO + $H_2O \rightarrow Ca(OH)_2$ 1(c) Due to anionic hydrolysis as it is a salt of strong base (NaOH)1and weak acid (H_2CO_3).1(a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases1and bond length decreases. $1/2 + \frac{1}{2}$ (ii) Because lateral orbital overlap always follows axial overlap.113	27.	(gypsum) (P.O.P)		3
(b) $CaO + H_2O \rightarrow Ca(OH)_2$ 1(c) Due to anionic hydrolysis as it is a salt of strong base (NaOH)1and weak acid (H_2CO_3).1(a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases1and bond length decreases. $\frac{1}{2} + \frac{1}{2}$ (ii) Because lateral orbital overlap always follows axial overlap.13		OR		
(c) Due to anionic hydrolysis as it is a salt of strong base (NaOH)1and weak acid (H2CO3)(a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases.and bond length decreases.½ + ½(ii) Because lateral orbital overlap always follows axial overlap.131		(a) Mg. Diagonal relationship.	1	
and weak acid (H2CO3). (a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases and bond length decreases. $\frac{1}{2} + \frac{1}{2}$ (ii) Because lateral orbital overlap always follows axial overlap. 1 3 1 1 3		(b) CaO + $H_2O \rightarrow Ca(OH)_2$		
(a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases//and bond length decreases.//(ii) Because lateral orbital overlap always follows axial overlap.113		(c) Due to anionic hydrolysis as it is a salt of strong base (NaOH)	1	
and bond length decreases. $\frac{1}{2} + \frac{1}{2}$ (ii) Because lateral orbital overlap always follows axial overlap.113		and weak acid (H_2CO_3).		
(ii) Because lateral orbital overlap always follows axial overlap. 1 3		(a) (i) Due to 0, 1 & 2 pi-bonds respectively, bond order increases		
1		and bond length decreases.	1/2 + 1/2	
		(ii) Because lateral orbital overlap always follows axial overlap.	1	3
(b) MO confg. of			1	
		(b) MO confg. of		

www.cbseguess.com Other Educational Portals

www.icseguess.com | www.aipmtguess.com | www.aieeeguess.com | www.niosguess.com | www.iitguess.com

	O_2^+ and O_2^- are as follows :	1	
28.	O_2^+ : KK[$\sigma(2s)^2$] [$\sigma^*(2s)^2$] [$\sigma(2pz)^2$] [$\pi(2px)^2$] [$\pi(2py)^2$] [$\pi^*(2px)^1$]		5
	B.O. = ½ (10-5) = 2.5	1	
	O ₂ : KK[σ(2s) ²] [σ*(2s) ²] [σ(2pz) ²] [π(2px) ²] [π(2py) ²] [π*(2px) ²]		
	B.O. = ½ (10-6) = 2.0.	3	
	MO confg. of	No step	
	N ₂ ⁺ : KK [σ(2s ²)] [σ*(2s ²)] [π(2px ²)] [π(2py ²)] σ(2pz ¹),	marking	
	B.O. = $\frac{1}{2} \{ 9 - 4 \} = 2.5$		
	N ₂ : KK [σ(2s ²)] [σ*(2s ²)] [π(2px ²)] [π(2py ²)] [σ(2pz ²)]		
	B.O. = $\frac{1}{2}$ {10 - 4} = 3.0		
	As clear from above, B.O. for N_2^+ is less than that for N_2 and for O_2^+ is more than that for O_2 hence the observation.		
	OR		
	(a) (i) An attempt of rotation will finish the overlap and break		
	the bond.		
	(ii) For seven covalent bonds are required, therefore seven hybrid		
	orbitals are needed hence sp ³ d ³ hybridization.		
	(b) This can be understood by taking the example He ₂ species.		
	For He ₂ (4) : σ (1s) ² σ *(1s) ²	1	
	therefore bond order is $\frac{1}{2}(2-2) = 0.0$		5
	For $He_2^+(3) : \sigma (1s)^2 \sigma^*(1s)^1$	1	
	therefore bond order is $\frac{1}{2}(2-1) = 0.5$		
L	1	1	1

www.cbseguess.com

	As clear from above, B.O. for He_2 comes out to be zero, hence	3	
	formation of the diatomic molecule is not possible. However ${\rm He_2}^+$	No step marking	
	exists because of finite bond order.	marking	
	(a) We know that, H = U + PV(i). For initial state,		
	$H_1 = U_1 + PV_1$ (ii). For final state,		
	$H_2 = U_2 + PV_2$ (iii), (iii) – (ii) gives,		
	$(H_2 - H_1) = (U_2 - U_1) + P(V_2 - V_1)$, or,		
	$\Delta H = \Delta U + P\Delta V$ (iv). Also $PV_1 = n_1RT$ and $PV_2 =$	2	
	$n_2 RT$ assuming ideal gas behaviour. Therefore, P ΔV	2	
29.	= $(n_2 - n_1)RT = \Delta n RT$. Substituting for P ΔV in (iv) we get	No step marking	5
	ΔH = ΔU + $\Delta nRT.$ Now by definition . ΔH = q_p and ΔU = q_v		
	$\Rightarrow q_p$ = $q_v + \Delta n_g RT$, 'g' signifies gaseous phase.		
	(b) Solution : Given,		
	C (graphite) + O ₂ (g) → CO ₂ (g) ; Δ H = −393.5KJmol ⁻¹ (i)		
	C (diamond) + $O_2(g) \rightarrow CO_2(g)$; ∆H = −395.4KJmol ⁻¹ (ii)		
	We aim at,		
	C (graphite) \rightarrow C (diamond) ; Δ H = ?	2	
	(ii) – (i) gives,	No step	
	C (graphite) \rightarrow C (diamond) ; Δ H = + 1.9KJmol ⁻¹	marking	
	(c) It is that thermodynamic quantity, the decrease in whose value is		
	equal to the useful work done by the system.		

www.cbseguess.com

c)R	1	
(a) By defn. Cp = dH/dT and Cv = dE/d	IT.		
therefore, Cp - Cv = dH/dT - dE/dT	(1)		
but H = E + PV and PV = RT for 1 m	ole of an ideal gas,		
therefore, H = E + RT.			
differentiating w.r.t. we get, dH/d	T = dE/dT + R	2	
or, dH/dT - dE/dT = R(2)		No step	
equating (1) and (2) we get,		marking	5
Cp - Cv = R.			
(b) Solution : We aim at $2C(s) + 2H_2(g)$	$(z) \rightarrow C2H_4(g); \Delta H = ?$		
Multiplying (i) by 2 , (ii) by 2 and re	eversing (iii) we get, (a) 2C(s)		
+ 2O ₂ (g) → 2CO ₂ (g); ΔH = -792KJ			
(b) $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$; ΔH	= -574KJ		
(c) $2CO_2(g) + 2H_2O(I) \rightarrow C_2H_4(g) +$	3O ₂ (g); ΔH = +1400KJ.	2	
adding (a),(b) and (c) we get		No step marking	
$2C(s) + 2H_2(g) \rightarrow C_2H_4(g)$; $\Delta H = -7$	92-574+1400 = +34KJ		
(c) Heat change during a chemical rea	action is same		
whether the reaction is completed	l in a single or more		
than one step.			
(a) On heating, borax loses its water	of crystallisation swells up to	1	
form a puffy mass. On further hea	ting it melts into a clear liquid		

www.cbseguess.com

	which solidifies to a transparent glass like bead which consists of		
	sodium meta borate (NaBO ₂) and boric anhydride (B_2O_3).	3	
	$Na_2B_4O_7.10H_2O$ <u>Heat $Na_2B_4O_7 + 10H_2O$</u>		
	(borax)		
30.	$Na_2B_4O_7$ Heat $\ge 2NaBO_2 + B_2O_3$		5
	(sodium meta borate) (boric anhydride)		
	The glassy bead is commonly known as borax bead and is		
	employed for detection of certain coloured basic radicals such as		
	Ni ²⁺ , Co ²⁺ , Cr ³⁺ , Cu ²⁺ , etc.		
	(b) (i) Formation of +2 state can be easily attained by losing		
	electrons but formation of +4 state is difficult as very large		
	ionization enthalpy, hence the observation.		
	(ii) Due to larger size silicon atoms cannot form $p\pi$ – $p\pi$ multiple	1	
	bonds.		
		1	
	OR		
	(a) (i) Borazine or borazole $(B_3N_3H_6)$	1	
	(ii)new family of carbon allotropes consisting of large	1	
	spheroidal molecules of composition C_{2n} (n \ge 30)		
	(b) (i) Due to absence of d-orbitals in C atom and their	1	
	presence in Si atom		
L	1	1	

www.cbseguess.com

(ii) Compounds with metal atoms in higher oxidation state	1	
are predominantly covalent as to lose larger number of		
electrons requires higher ionization energy.		
(iii) Due to greater extent of back bonding in BF ₃	1	
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		5
Paper Submitted By:		
Name Paramjeet Singh Hora		
Email amol.preet@yahoo.com		

www.cbseguess.com

